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Abstract. We consider a diatomic molecule with fixed nuclei of charges 2, and ZI. and N 
electrons. We find upper bounds on the kinetic energy of the molecule and the energy of the 
electronic conlribution as a function of the nuclear separation R. 

1. Introduction 

Consider a diatomic molecule with infinitely heavy nuclei of charges ZI ~ ZZ > 0 at positions 
- R / Z  and R/2k respectively, and N electrons. Here 6 is a fixed unitary vector in R3. 
The electronic contribution (in units where h = 2m, = e = 1) is given by the Hamiltonian 

acting over the antisymmetric space DN C AEl(lL2(R3) 63 U) .  We consider the spin to be 
given by s = (q - 1)/2, where q = 2 in nature (i.e. s = 1/2). 

The ground-state energy of the electronic contribution is defined by 

eN(Z1. ZZ, R) = inf((PNIHN(Z1, z2, R)IPN) I V N  E D N ,  11 PN \I= 11 (2)  
while the kinetic energy is given by 

where @N is the ground state of the electronic contribution. The total energy of the diatomic 
molecule is given by 

z1 z2 
E N ( ~ I ,  Zz, R) = 4v(Zl, Zz, R )  f R 

where the second term corresponds to the nuclear repulsion energy. 
Mathematical properties of the ground-state energy of the electronic contribution as 

a function of the nuclear separation are of general interest. Aventini and Seiler [l] 
have studied the Hamiltonian of a diatomic molecule with one elecaon proving that the 
eigenvalues depend smoothly on the distance between the nuclei. A diatomic molecule 
with more electrons was studied by Combes and Seiler 121; they proved the analyticity 
of the eigenvalues of the electronic Hamiltonian for all R + 0. Lieb and Simon [3] 
have studied the dependence of the ground-state energy of the electronic contribution for a 
diatomic molecule with one electron as a function of the nuclear separation R, proving that 
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this function increases monotonically for R > 0. In that paper they conjectured that there 
also exists similar monotonicity properties for diatomic molecules with more electrons. 

In this paper we will prove an upper bound on the electronic contribution of a diatomic 
molecule with N electrons. Also, we can give an upper beund on the derivative of the 
electronic contribution at R = O+. 

In a beautiful work [ 4 ] ,  Bach proved the accuracy of the ground-state energy in the 
Hartree-Fock theory. In that paper he obtained a simple bound on the kinetic energy for 
molecules, a bound which was later used by Ivrii and Sigal [5] in their proof of the Scott 
conjecture for molecules. In this work we want to show an improved bound for the kinetic 
energy of diatomic molecules using the virial theorem, the Feynman-Hellmann formula. the 
Rayleigh-Ritz variational characterization for atoms and a simple concavity argument. We 
have used these methods in [6] to improve the bounds given by Solovej on the size and on 
the number of electrons in a diatomic molecule 171. 

The main results in this paper are the following theorems. 

Theorem I .  For a diatomic molecule of nuclear charges Z I ,  Z2 > 0 and N electrons, the 
kinetic energy obeys 

where ~"(0) is the ground-state energy of ELl(-Ai  - Ixil-'). 

Remark. Since 

it follows from (4) that 

K < 4(Z1 + Z2)2( - -€N(O))  

which corresponds to the bound given by Bach [4]. 

In the case when N = 1, we can improve the bound given above: 

Theorem 2. For a diatomic molecule of nuclear charges ZI, Z2 > 0 and one electron, the 
kinetic energy is bounded by 

(6) 
where E ; ( Z )  is the ground-state energy of an atom with N electrons and nuclear charge 
Z .  

K g -E;'(Z1 + ZZ) = gcz, + Z2)* 

Notice that, because of the virial theorem, -E?(& + Z2) is the kinetic energy of an 
atom with nuclear charge ( Z ,  + Z , )  and one electron. Then, for a diatomic molecule with 
one electron we have 

K(molecu1e) < K(atom). (7) 
We believe this inequality should also hold for systems with more electrons. 

In the following section we will obtain an upper bound on the electronic contribution 
in the manner of the united atom bound [PI. In section 3 we will prove the theorems and in 
the last section we will give an application of these theorems in obtaining an upper bound 
on the electronic density at the nuclei. 
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2. An upper bound on the energy of the electronic contribution 

The united atom bound 181 for the electronic contribution to the energy of a diatomic 
molecule of nuclear charges Z I ,  ZZ > 0 and nuclear separation R is 

2975 

eN(Z1, ZZ, R )  E a ( N ,  ZI + zd (8) 
where E,(N,  Z )  is the ground-state energy of an atom of nuclear charge 2 and N electrons. 

It is also possible to obtain an upper bound on eN(Z1, ZZ. R )  in terms of  Eat(?/, Z I  +Z2).  
In fact, we have the following lemma. 

Lemma 1. 

Eat(N, Z I  + Z Z )  < eN(Z1. Z Z ,  R )  < (1 + ~ ( Z I  + W R ) - ' E a t ( N ,  Z I  + Z Z )  (9) 

Proof. 
let e ( R )  = t 'N(ZI,Zz,R) and @ N  on the ground state of H N ( Z I , Z Z , R ) .  
x 

The lower bound above is the united atom bound. To prove the upper bound 
We define 

( X I .  . . . , .xi ,  . . . , X N )  E R3N, where xi E B3. Therefore, we can write 

H N ( ~ I .  zz, R )  = -A  4- VR(X) 
where 4 = ELI 4i is the Laplacian operator over B3N and 

Since e ( R )  is non-degenerate [2,9,10], we can use the Feynman-Hellmann formula 

Using the uncertainty principle lemma (see for example [ l l ] ,  X2) we obtain 

Using the vinal theorem [12,13] we can also write 
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1 
R 

-- e(R)  - XWNI - WN).  

= - ( + N I  - ~ R ( X ) + ~ A ~ @ N )  

1 1 

R 
From (IO) and (11) it follows that 
- ae(R) I 1 a@) 

2R(Z1+ Zz) 7 < --e(R) - aR R 
and, therefore, 

Hence, ( R  + 1/2(Z1 + Z2))e(R) is a non-increasing function of R,  which, therefore, attains 
its maximum value at R = 0, i.e. 

which implies the lemma. 0 

From this lemma we can obtain two direct results. The first result asserts that the 
electronic contribution converges to the energy of an atom when R -+ 0, In fact, taking 
the limit on the lemma we obtain 

eN(Z1, z2.0') = E;(ZI + ZZ). (12) 
The second result is an upper bound on the derivative of eN(ZI,&, R )  in R = O+. From 
a direct calculation we obtain 

1 1 
- ( ~ N ( ( Z I , Z Z . R ) - ~ N ( Z ~ , Z Z , O ) )  < - ( I - ~ ( Z I  +Zz)R+O(R*)- l )E;(Zl  + Z Z )  R R 

and, therefore, 
(13) 

(14) 
a 

-eN(ZI, ZZ. R )  IR+< -2(zl + Zz)E;(ZI + ZZ). aR 

3. Upper bounds on the kinetic energy 

Proof of zheorem 1 [141. Using Bach's method [4] we can write 
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where we have used the variational characterization of E , ( N ,  Z ) .  From this last equation 
and lemma 1 we conclude 

As in [6,15], let us consider the function c N ( q ) ,  with q > 0, which corresponds to the 
ground-state energy of the Hamiltonian 

It is well known [8] that @‘“q) is monotone increasing, in particular c N ( q )  > ~‘(0). 
Moreover, c N ( q )  is concave and 

E,,(N, Z )  = z * ~ ~ ( l / Z ) .  

Therefore, 

(15) 

Using the concavity and the monotonicity of c N ( q )  it follows from (15) that 

which proves the theorem. 0 

To prove the second theorem we will need to use a result proved by Lieb and Simon 
in 131: 

Lemma 2. For all R > 0 
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This lemma was proved by Hoffmann-Ostenhof [16]. A version valid for multi-centre 
one-electron systems was proved by Benguria in [17]. 

Proof of theorem 2 [I4] .  Taking equation (1 1) for all R z 0 and using lemma 2 we have 

(611 - AI&) 4 - N O  (17) 
where #I is the ground state of the diatomic molecule with one electron and e(R) = 
el(Zl, Z2, R ) .  Therefore, we can use the united atom bound and obtain 

(41 I - A l h )  < -Ef(Zt + Zz) = ~ ( Z I  + Z2)’. (18) 
U 

4. An upper bound on the electronic density at the nuclei 

One of the problems that has attracted attention in mathematical physics in recent years 
has been the determination of upper bounds on the electronic density at the atomic nucleus. 
The first rigorous global result is the bound given by Hoffman-Ostenhof and Hoffman- 
Ostenhof [18]. For large atoms (i.e. Z + w)  the best result to date is the bound by 
Siedentop [20] who proved a conjecture argued by Narnhofer. 

The density of the electrons at the nuclei of molecules or clusters in general appeared in 
a paper by Lieb and Thirring [21] as a parameter in the energy of the cluster. In their paper, 
Lieb and Thirring proved the universality of van der Waals forces for Coulomb systems. 
For diatomic molecules with one electron Hogreve [I91 plotted this function numerically. 
In this section we will give a bound on the density of the electrons at the nuclei for diatomic 
molecules which depends on the distance of separation between the nuclei. 

The electronic density is defined as 

where the sums over the spin variables of the electrons x~ to X N  are implicit in the integral. 
The bound for the electronic density at the nucleus given in [l8] can be extended to the 

case of diatomic molecules [21] to give 

where #N is the ground state of the molecule. 

[ I l l :  
As in [21] we can bound this expression from above using the uncertainty principle 

Therefore, we can use our bound on the kinetic energy, already proved, to obtain 

p(nuciei) < ~ ( Z I  + z2)3 (22) 

for molecules with N = 1,  and 

for N z 1. 
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