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A bound on the kinetic energy of diatomic molecules
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Facultad de Fisica, Pontificia Universidad Catélica de Chile, Casilla 306, Santiago 22, Chile

Reeeived 19 August 1994, in final form 1 February 1995

Abstract. 'We consider a diatomic molecule with fixed nuclei of charges Zy and Z;, and N
electrons. We find upper bounds on the kinetic energy of the molecule and the energy of the
electronic contribution as a function of the noclear separation R.

1. Introduction

Consider a diatomic molecule with infinitely heavy nuclei of charges Z), Z; > 0 at positions
—R/2A and R/24 respectively, and N electrons. Here # is a fixed unitary vector in R?.
The electronic contribution (in units where # = 2m, = e = 1) is given by the Hamiltonian

N
Hy(Z\, 2y, R) = Z( Ai v+ (R/DA] Ix — (R/2)ﬁl) > % @

i=1 reforen i —

acting over the antisymmetric space Dy C A (L*(R%) ® C7). We consider the spin to be
given by s = (g — 1)/2, where g = 2 in nature (i.e. s = 1/2).
The ground-state energy of the electronic contribution is defined by
en(Zy, Zy, RY = inf{{on|Hn(Z1, Z3, R)low) fow € D, llon =1} (2)

while the kinetic energy is given by

N
K = (gnlY_ —Ailpn} ©)
i=1
where ¢y is the ground state of the electronic coniribution. The total energy of the diatomic
molecule is given by

ZZ
EN(ZI) ZZ} R) = el\"(zli 221 R) + o2

where the second term corresponds to the nuclear repulsion energy.

Mathematical properties of the ground-state energy of the electronic contribution as
a function of the nuclear separation are of general interest. Aventini and Seiler [1]
have studied the Hamiltonian of a diatomic molecule with one electron proving that the
eigenvalues depend smoothly on the distance between the nuclei. A diatomic molecule
with more electrons was studied by Combes and Seiler [2]; they proved the analyticity
of the eigenvalues of the electronic Hamiltonian for all R % 0. Lieb and Simon [3]
have studied the dependence of the ground-state energy of the electronic contribution for a
diatomic molecule with one electron as a function of the nuclear separation R, proving that
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this function increases monotonically for R > 0. In that paper they conjectured that there
also exists similar monotonicity properties for diatomic molecules with more electrons.

In this paper we will prove an upper bound on the electronic contribution of a diatomic
molecule with N electrons. Also, we can give an upper bound on the derivative of the
electronic contribution at R = 0%,

In a beautiful work [4], Bach proved the accuracy of the ground-state energy in the
Hartree—Fock theory. In that paper he obtained a simple bound on the kinetic energy for
molecules, a bound which was later used by Ivrii and Sigal [5] in their proof of the Scott
conjecture for molecules. In this work we want to show an improved bound for the kinetic
energy of diatomic molecules using the virial theorem, the Feynman-Hellmann formula, the
Rayleigh—Ritz variational characterization for atoms and a simple concavity argument. We
have used these methods in [6] to improve the bounds given by Solovej on the size and on
the number of electrons in a diatomic molecule [7].

The main results in this paper are the following theorems.

Theorem 1. For a diatomic molecule of nuclear charges Z;, Z, > 0 and ¥ electrons, the
kinetic energy obeys

144(Z) + Z2)R
1+2(Z; + Z)R

where &V (0) is the ground-state energy of ZLI(—A; - ™.

K <221 + 2, [ ] (—e¥ () )

Remark. Since
1+4(Zy+ Z)R
{ 1+2(Z,+ Z2)R
it follows from (4) that
K < 4(Zy + Zo)(—e" (0)) (5)
which corresponds to the bound given by Bach [4].

}sz forall R = 0

In the case when N = 1, we can improve the bound given above;

Theorem 2. For a diatomic molecule of nuclear charges Z, Z; > 0 and one electron, the
kinetic energy is bounded by

K —EMZi+ 22) = {(Z1 + Zo)* (6)

where E%(Z) is the ground-state energy of an atom with N electrons and nuclear charge
Z.

Notice that, because of the virial theorem, —E{{(Z) + Z;) is the kinetic energy of an
atom with nuclear charge (Z, + 2Z;) and one electron. Then, for a diatomic molecule with
one electron we have

K {molecule) £ K (atom). (N

We believe this inequality should also hold for systems with more electrons.

In the following section we will obtain an upper bound on the electronic contribution
in the manner of the united atom bound {8]. In section 3 we will prove the theorems and in
the last section we will give an application of these theorems in obtaining an upper bound
on the electronic density at the nuclei.
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2. An upper bound on the energy of the electronic contribution
The united atom bound [8] for the electronic contribution to the energy of a diatomic
molecule of nuclear charges Z), Zz > 0 and nuclear separation R is

en(2y, Z2, R) 2 Ex(N, Z; + Z5) (8)

where Ey (N, Z) is the ground-state energy of an atom of nuclear charge Z and N electrons.
It is also possible to obtain an upper bound on ey{Z;, Za, R) in terms of Ex(N, Z;+ Z»).
In fact, we have the following lemma.

Lemma 1.
Ea(N, Zi + Z) S en(Z1, Z3. R) < (1 + 2(Z; + Zo)R) ' Ex(N, Z1 + Z2) 9
Proof. The lower bound above is the united atom bound. To prove the upper bound

let e(R) = ex(Z;,Z3, R) and ¢n on the ground state of Hy(Z,, Z,, R). We define
x=(x1,...,%,...,xy) € B?¥, where x; € R3. Therefore, we can write

Hy(Zy, Z3, R) = —A + Vplx)
where A = YU, A; is the Laplacian operator over R*¥ and

N
Z[ Zn
V = - ~y ~ -
" Z( i+ (R/2)] lxs—(R/2)nl)+ls§$N 5]

=1

Since e(R) is non-degenerate [2,9,10], we can use the Feynman—Hellmann formula
de(R) an(x)

IR = {¢nl Ibn)
Zii - (x; + (R/2)n) Zaft - (x; — (R/2)R)
(¢NIZ( 2|x; + (R/2i)? 20x; — (R/2)A)? ) (%

Zs
<¢~|Z(2[ ,+(R/z)n[2 21x; _(R/z)sz) o)

1 Zilgn () Zalgn )12
T 24 (f i + (R/ AP d”/ % = (R/DAR dx)‘

Using the uncertainty principle lemma (see for example [11], X2) we obtain

de(R
‘;( ) < Zmz]m[ Ailw) +4Za (x| — A L)
= 7, + Z2) (] — Al
that is
1 de(R)
(Gl = Alow) > 5z (10)
Using the virial theorem [12, 13] we can also write
de(R v
e( 3R _ ioul “(x’zrp )

= (¢NIE("VR()C) — XV Vr(x))lown)
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1
= E(‘ﬁwl — Vrix) 4+ 2A|¢x}
! i
=“E9(R)"E<¢NI_A|¢N}- (11}
From (10) and (11} it follows that
de{R) 1 1 8e(R)
T R Y AT
and, therefore,

d 1
3R {(R+ 2(Z, +Zz)) e(R)] <0

Hence, (R4 1/2(Z; + Z3))e(R) is a non-increasing function of R, which, therefore, attains
its maximum value at R =0, i.e.

(R N 1 ) e(R) e(0) _ Ex(N, 21+ 27)
2(Z, + Z) T AZy + Z) AZ; + Za)
which implies the lemma. [

From this lemma we can obtain two direct results. The first result asserts that the
electronic contribution converges to the energy of an atom when R — (. In fact, taking
the limit on the lemma we obtain

- en(Z1, 22, 07) = E5(Z) + Z). (12)

The second result is an upper bound on the derivative of ey(Z1, Z3, R) in R = 0. From
a direct calculation we obtain

1 1
2 @V 21 22, R) —en(21, 23, 0)) < (A —2AZy + )R + O(R®) — DER(Z1 + Z3)

(13)
and, therefore,
a3
FREN(Z1 22, R) IR0 —~2AZ; + Z)EN(Z1 + Z2). (14)
3. Upper bounds on the kinetic energy
Proof of theorem I [14].  Using Bach’s method [4] we can write
en(Zy, Z R)—(qfalZN:(A Z Zz )
VL SR NN T i+ RAL | — (R/2)A
+ )
1gi<joN i = %1
1 N
> E(¢N|Z—ﬂ-f|¢1\r)
=1
Z; Y AZ, + Z»)
byl D (A - )
2(21 + ZZ) {¢VI Z( I + (RIZ) I) 1&;&“’ |xl x}[ |¢N)
Z AZ + Zy)
FYC XY —Ap = =) +
t3m Tz )<¢NIZ< TR K;ﬂ ™ _le —n}
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N
Z
> %@Ni E —AlpN) + e Ea(N, AZ, + Z2))
=

HZ)+ Z)
P2 En(N, 2Z) + Z2))
2(2[ + 22) at 1 1 2

N
1
= (ol Zr —Alw) + L Ea(N, UZ) + Z2))
=
where we have used the variational characterization of E (N, Z). From this last equation
and lemma ] we conclude

(142(Z: 4+ Z2)R)

As in [6,15], let us consider the function ¢¥ (), with n > 0, which corresponds to the
ground-state energy of the Hamiltonian

N
1 1

HY (o)) = (—Ai———)+ :

" Z [x:] lsgﬂv |x; — x;1

i=1

N
2
{onl Y —Ailgn) < Eu(N, Zt + Z2) — Ex(N, 2(Z) + Z2)).
i=i

It is well known [8] that ¢¥(s) is monotone increasing, in particular ¢V(n) > €"(0).
Moreaver, €” () is concave and

Ex(N,Zy = Z%"(1/2).
Therefore,

3 2AZy+ 2 (] anf{ 1
(¢NI;~A;-E¢~) < AN (z! +22) — M2y + 2)e (m)
(15)

Using the concavity and the monotonicity of ¥ () it follows from (15) that

3 AZi+ 2o 1 2N 1
@13~ < G5 4 R (Z1+Zz) — 22, + Zy)e (21”2)

~2Z; + 25y (0)
4(Z) + Z»)*R N ( 1
Zy+ 27

T 422+ Z)R)
4(Z1+Zz)2fi’ N 2N

< - eV (0) = 2Z; + Z2)?eM (0
0122 7500 (0) = 2(Z1 + Zo)Ye" (0)
1+4(Z, + Z)R

=UZ + 2P R
(Z1+ 22) {1+2(Z1+22)R
which proves the theorem. O

) —2(Z, + Zp)*e (0

} CTA (1))

To prove the second theorem we will need to use a result proved by Lieb and Simon
in [3]:

Lemma 2. Forall R >0

9
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This lemma was proved by Hoffmann-Ostenhof [16). A version valid for multi-centre
one-electron systems was proved by Benguria in [17].

Proof of theorem 2 [14]. Taking equation ($1) for all R > 0 and using lemma 2 we have
(@11 — Blgn) < —e(R) amn

where ¢ is the ground state of the diatomic molecule with one electron and ¢(R) =
e1{Zy, Z,, R). Therefore, we can use the united atom bound and obtain

(1] — Alg) < ~ENZ1 + Z2) = $(Z1 + Z2)%. (18)
O

4. An upper bound on the electronic density at the nuclei

One of the problems that has attracted attention in mathematical physics in recent years
has been the determination of upper bounds on the electronic density at the atomic nucleus.
The first rigorous global result is the bound given by Hoffmann-Osterhof and Hoffmann-
QOstenhof [18]. For large atoms (i.e. Z — c0) the best result to date is the bound by
Siedentop [20] who proved a conjecture argued by Narnhofer,

The density of the electrons at the nuclei of molecules or clusters in general appeared in
a paper by Lieb and Thirring [21] as a parameter in the energy of the cluster. In their paper,
Lieb and Thirring proved the universality of van der Waals forces for Coulomb systems.
For diatomic molecules with one electron Hogreve [19] plotted this function numerically.
In this section we will give a bound on the density of the electrons at the nuclei for diatomic
molecules which depends on the distance of separation between the nuclei.

The electronic density is defined as

plx) = lbw (x, 03 %25 .3 xn )P dxa . dxy (19)

a’;fz n/{.R:‘xC’]W'”
where the sums over the spin variables of the electrons x3 to xy are implicit in the integral.

The bound for the electronic density at the nucleus given in [18] can be extended to the
case of diatomic molecules {21] to give

(nuclei) < li@ l{ g = }z¢ ) (@0
g R~ Y lxs+(R/2)ﬁI2 lx: — (R |

where ¢y is the ground state of the molecule.
As in [21] we can bound this expression from above using the uncertainty principle

[111:

N
plouclei)0 < § (42 (gw] — Ailpy) +4Z2(9w] — B116w)) = $(Z) + ZDK. 1)

i=l
Therefore, we can use our bound on the kinetic energy, already proved, to obtain
pauclei) € 1(2, + Z)° (22)
for molecules with N = 1, and
14+4(Zy + ZOR

lei) € 8(2y + Zo)P { — — 20
p{nuclei) £ 5(Z; + Z3) {I+2(Z.+Z;)R

] (—<" (0)) (23)
for N > 1.
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